	() Prova	() Prova Semestral		Nota:
	(x) Exercícios	() Segunda Chamada		
UNISOCIESC	() Prova Modular	() Prova de Recuperaçã	io	
	() Prática de Laboratório)		
ONISOCIESC	() Exame Final/Exame de Certificação			
Educação e Tecnologia	() Aproveitamento Extra	ordinário de Estudos		
Disciplina: Cálculo Numérico			Turma:	
Professor: Milton, Pericles e Rebello			Data: nov / 2013	
Aluno (a):				

5ª LISTA DE EXERCÍCIOS – EDOS

Exercício 1)

Dado o PVI abaixo, considere h = 0.5 e 0.1 (no computador).

$$\begin{cases} y' = 4 - 2x \\ y(0) = 2. \end{cases}$$

- a) Encontre uma aproximação para y(5) usando o método de Euler aperfeiçoado, para cada h.
- b) Compare seus resultados com a solução exata dada por $v(x) = -x^2 + 4x + 2$. Justifique.

Exercício 2)

Use os métodos de Euler, Euler aperfeiçoado e Runge-Kutta de 4^a ordem com h=0.2 e 0.025 (no computador) para encontrar y (2) sendo dado o PVI:

$$\begin{cases} y' = \cos x + 1 \\ y(0) = -1. \end{cases}$$

Exercício 3)

Use os métodos de Euler, Euler aperfeiçoado e Runge-Kutta de 4^a ordem (no computador) com passo h = 0.2 e 0.025 para encontrar y (1.6) sendo dado o PVI:

$$\begin{cases} y'(x) = \frac{1}{x}(2y + x + 1) \\ y(1) = 0.5. \end{cases}$$

Exercício 4)

Considere o PVI $\begin{cases} y' = yx^2 - y \\ y(0) = 1. \end{cases} \text{ com } x \in [0, 1],$

- a) encontre a solução aproximada usando o método de Euler com h=0.25 e h=0.5.
- b) idem, usando o método de Euler aperfeiçoado;
- c) idem, usando Runge-Kutta de 4^ª Ordem;
- d) sabendo que a solução analítica do problema é $y = \exp(-x + x^3/3)$, coloque num mesmo gráfico a solução analítica e as soluções numéricas encontradas nos itens anteriores. Compare os resultados.

Exercício 5)

Certamente os resultados das questões anteriores não conferem com os valores corretos. Explique o(s) motivo(s). Como poderíamos obter melhores resultados?

Exercício 6)

Se uma lâmina da tesoura é reta e a outra é uma curva descrita por y(x) tal que y' = 3y + 4x então entre elas sempre se forma um ângulo cuja tangente é 4/3. 3x - 4y Sabendo que y(8) = 0, calcule y(x) para $x \in \{6, 7, 17/2, 9\}$ e faça o gráfico de y(x) em [6, 9].

Exercício 7)

Um corpo à temperatura de $400^{\circ}C$ é colocado à temperatura ambiente de $20^{\circ}C$. A temperatura T do corpo varia segundo $3T' + T - 20 = \theta$. Calcule T nos dois primeiros minutos e faça o gráfico de T num período mais longo (lembre-se que T tenderá para $20^{\circ}C$).

Exercício 8)

Num tanque, inicialmente estão $40\ l$ de uma solução cuja concentração é de 5g/l de impurezas. Ao mesmo tempo em que se deixa entrar $3\ l/min$ de solução mais limpa (1g/l), deixa-se sair 2l/min da solução homogeneizada. Tal concentração C(t) varia segundo a equação C'=(3-3C)/(40+t). Calcule a concentração nos dois primeiros minutos e represente-a graficamente por um período mais longo.

Exercício 9)

A velocidade de decida de um pára-quedas satisfaz à equação diferencial $v'=g-kv^2/m$, onde $g=10m/s^2$, k=5Kg/m e a massa m=15Kg. Faça o gráfico da velocidade, saindo do repouso (lembre-se que v tenderá para o valor que faz v'=0).

Exercício 10)

A população p de certa espécie de seres vivos, num ambiente que só permite 1000 habitantes, começou com 200 e cresce (com o tempo t em anos) segundo a equação diferencial p'=p.(1000-p)/2500. Use o método de Runge-Kutta de 2^{a} ordem (com espaçamento de 1 ano) para calcular a população nos três primeiros anos e fazer o gráfico desta opulaçã $t \times p$ por um período de tempo maior (p tenderá para 1000)

Exercício 11)

Comente a respeito da seguinte afirmação: O método de Euler é muito inexato, porém é de fundamental importância no estudo numérico das Equações Diferenciais Ordinárias.