Seção 2 - Transformações no gráfico

Tema: Transformações no gráfico.

Pré-requisitos: Conhecimento das funções: polinomial do primeiro grau, polinomial do segundo grau, modular, exponêncial e logarítmica.

Público alvo: Alunos da primeira série do ensino médio e das disciplinas de cáculo da 1^a fase dos cursos de ciências exatas.

Objetivos:

- Identificar transformações no gráfico.

Software: WinMat

Tempo estimado: 45 minutos

Atividades:

- 1. Faça o gráfico das funções: $y = x^2 + 2x + 1$ e $y = -(x^2 + 2x + 1)$, $y = e^x$ e $y = -e^x$, $y = \log(x) + 1$ e $y = -(\log(x) + 1)$. Dado o gráfico de f(x), o que se pode afirmar sobre o gráfico de g(x) = -f(x)?
- 2. Faça o gráfico das funções:

(a)
$$y = \left(\frac{1}{2}\right)^x$$
, $y = \left(\frac{1}{2}\right)^x + 1$, $y = \left(\frac{1}{2}\right)^x + 2$, $y = \left(\frac{1}{2}\right)^x + 3$, $y = \left(\frac{1}{2}\right)^x + 4$, $y = \left(\frac{1}{2}\right)^x + 5$

(b)
$$y = \left(\frac{1}{2}\right)^x$$
, $y = \left(\frac{1}{2}\right)^x - 1$, $y = \left(\frac{1}{2}\right)^x - 2$, $y = \left(\frac{1}{2}\right)^x - 3$, $y = \left(\frac{1}{2}\right)^x - 4$, $y = \left(\frac{1}{2}\right)^x - 5$

(c)
$$y = |x|, y = |x| + 1, y = |x| + 2, y = |x| + 3, y = |x| + 4, y = |x| + 5$$

(d)
$$y = |x|, y = |x| - 1, y = |x| - 2, y = |x| - 3, y = |x| - 4, y = |x| - 5$$

- 2.1 Analisando o gráfico da função $y = f(x) + \lambda$, observamos que foi alterado o posicionamento de f(x) em relação ao eixo das ordenadas. (Transformação vertical)
 - (a) O gráfico de $f(x) + \lambda$, com $\lambda > 0$, será uma translação vertical do gráfico de f(x) para ______.

- (b) O gráfico de $f(x) + \lambda$, com $\lambda < 0$, será uma translação vertical do gráfico de f(x) para ______.
- 3. Faça o gráfico das funções:

(a)
$$y = |x|, y = |x+1|, y = |x+2|, y = |x+3|, y = |x+4|, y = |x+5|.$$

(b)
$$y = |x|, y = |x - 1|, y = |x - 2|, y = |x - 3|, y = |x - 4|, y = |x - 5|$$

(c)
$$y = x^2$$
, $y = (x+1)^2$, $y = (x+2)^2$, $y = (x+3)^2$, $y = (x+4)^2$, $y = (x+5)^2$.

(d)
$$y = x^2$$
, $y = (x - 1)^2$, $y = (x - 2)^2$, $y = (x - 3)^2$, $y = (x - 4)^2$, $y = (x - 5)^2$.

- 3.1 Analisando o gráfico da função $y = f(x + \lambda)$, observamos que foi alterado o posicionamento de f(x) em relação ao eixo das abscissas. (Transformação horizontal)
 - (a) O gráfico de $f(x+\lambda)$, com $\lambda > 0$, será uma translação horizontal do gráfico de f(x) para o lado ______.
 - (b) O gráfico de $f(x+\lambda)$, com $\lambda < 0$, será uma translação horizontal do gráfico de f(x) para o lado _______.
- 4. Faça o gráfico das funções

(a)
$$y = x^2$$
, $y = \frac{1}{2}x^2$, $y = \frac{1}{3}x^2$, $y = \frac{1}{4}x^2$, $y = \frac{1}{5}x^2$.

(b)
$$y = x^2, y = 2x^2, y = 3x^2, y = 4x^2, y = 5x^2.$$

Determine em qual item a parábola contraiu e em qual expandiu.

- 5. Encontre as famílias das curvas, usando o comando família:
 - (a) $y = ax^2$, com a variando entre 1 e 5 e com a variando entre 0 e 1.
 - (b) $5^{(x+a)}$, com a variando entre 1 e 5 e com a variando entre -5 e -1.
 - (c) $y = \log(x) + a$, com a variando entre 1 e 5 e com a variando entre -5 e -1.
- 6. No item a, em qual variação o gráfico contraiu, em qual expandiu.
- 7. No item b, em qual variação o gráfico se deslocou para a esquerda, em qual se deslocou para a direita.
- 8. No item c, em qual variação o gráfico se deslocou para baixo, em qual se deslocou para cima.