1. A equação $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0$ é denominada de equação de Laplace (1749 – 1827). Ela representa uma grande

ferramenta na área de engenharia para condução de calor, mecânica de fluidos e potencial elétrico.

Sendo assim, mostre que as funções abaixo são soluções para a equação de Laplace.

a)
$$u(x,y) = e^x sen(y)$$

b)
$$u(x,y) = x^3 + 3xy^2$$

2. Outra equação de grande aplicabilidade é a equação de onda: $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$, neste caso usada para oscilação de corda vibrante.

Verifique se as funções são soluções para a equação acima.

a)
$$u(x,t) = sen(x - at)$$

b)
$$u(x,t) = sen(kx). sen(akt)$$

Diferencial total de
$$f(x_1, x_2, x_3, ...)$$
: $df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i$

3. Determine a diferencial total de:

a)
$$f(x,y) = x^2 + xy^2 + sen(y)$$
 (Piskunov)

b)
$$z = xy + \ln(xy)$$

4. Dada a função $z=x^2-2xy+3y^2$, use o conceito da diferencial total para aproximar linearmente Δz no ponto P(3,1) considerando as variações em x e y como: $\Delta x = 0.04$ e $\Delta y = -0.02$.

Regra da cadeia para $u = f(x_1(t), x_2(t), x_3(t), ...)$: $\frac{du}{dt} = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \frac{dx_i}{dt}$

5. Use a regra da cadeia para determinação de $\frac{dz}{dt}$ (Anton v.2):

a.
$$z = x^2 + y^2$$
; $x = 1 - 5t$ e $y = t^2 - 1$

b.
$$z = 3x^2y^3$$
; $x = t^4$, $y = t^2$

c.
$$z = \ln(2x^2 + y^3)$$
; $x = \sqrt{t}$, $y = \sqrt[3]{t^2}$

d.
$$z = 3\cos x - \sin xy$$
; $x = \frac{1}{t}$, $y = 3t$

e.
$$z = 3e^{xy}$$
 ; $x = \sqrt[3]{t}$, $y = t^3$

6. Use a regra da cadeia para determinação de $\frac{\partial \phi}{\partial u}$ e $\frac{\partial \phi}{\partial v}$ (Anton v.2):

a.
$$\phi = 8x^2y - 2x + 3y$$
; $x = uv$, $y = u - v$

b.
$$\phi = \frac{x}{y}$$
; $x = 2\cos u$, $y = 3\sin v$
d. $\phi = \cos x \sin y$; $x = u$, $y = u^2 + v^2$

c.
$$\phi = e^{x^2 y}$$
 ; $x = \sqrt{uv}$, $y = \frac{1}{v}$

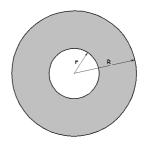
d.
$$\phi = \cos x \sin y$$
; $x = u$, $y = u^2 + a$

e.
$$\phi = 3x - 2y$$
; $x = u + v \ln u$, $y = u^2 - v \ln v$

- 7. Considere uma propriedade física, atuando numa partícula, variando no espaço segundo a função:
- $\phi = x^2 + y^2 + 2xyz$. Determine a sua variação no tempo $(\frac{d\phi}{dt})$ no ponto (1, 2, 3) em m, sabendo que a velocidade da partícula é dada pelas componentes vx = 2m/s , vy = -1m/s , vz = 1/2m/s .

Dica:
$$v_x = \frac{dx}{dt}$$

- 8. Considere um gás submetido a condição $\frac{P.V}{T}$ = 5 (P=pressão; V=volume; T= temperatura). Determine a taxa de variação da temperatura ($\frac{dT}{dt}$) para P = 5000 Pa e V = 0,4 m^3 , se o volume cresce a uma taxa de 0,01 m^3 /s e sua pressão cai 80 Pa/s.
- 9. Com base na região indicada determine a taxa de variação da área em relação ao tempo, no exato instante em que os raios assumem os valores r = 2m e R = 5m, sabendo que os raios interno e externo crescem a taxas de 0,03m/min e 0,02 m/min respectivamente.



Máximos e Mínimos:

10. Determine, para as funções, os pontos críticos e classifique-os (máximo local , mínimo local e sela):

a)
$$f(x,y) = 9 - 2x + 4y - x^2 - 4y^2$$

b)
$$f(x,y) = x^3y + 12x^2 - 8y$$

c)
$$f(x,y) = x^4 + y^4 - 4xy + 2$$

d)
$$f(x,y) = e^{4y-x^2-y^2}$$

e)
$$f(x,y) = x^3 - 3xy - y^3$$
 (Anton)

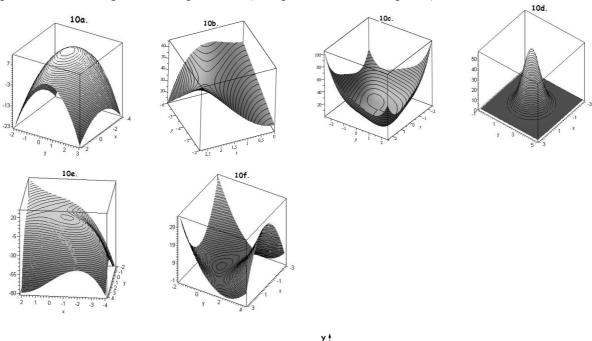
f)
$$f(x,y) = x^2 + 2y^2 - x^2y$$
 (Anton)

- 11. Determine as dimensões mais econômicas para uma caixa retangular sem tampa de volume 0.6 m^3 , sabendo que o fundo em madeira apresenta custo de R\$ $70.00/\text{m}^2$, duas laterais opostas de tela tem o custo de R\$ $80.00/\text{m}^2$ e as outras duas laterais em chapa com custo de R\$ $100.00/\text{m}^2$.
- 12. Considere a função $\Omega = 2x^4 x^2 + yz$, determine os extremos locais de Ω sobre o plano z = y 2.
- 13. Ache os extremos relativos para $f(x,y) = x^2 + 2xy + y^2$ condicionado a x y = 3
- 14. Ache os extremos relativos para $f(x,y,z) = \frac{1}{x} \frac{64}{y} + z^2$ condicionado a $z \sqrt{xy} = 0$
- 15. $T(x,y) = 2x^2 + y^2 y + 25$ (${}^{o}C$) representa o campo de temperaturas num disco circular limitado por $x^2 + y^2 = 1$ (raio de 1m). Encontre os pontos mais quentes e mais frios do disco.

Respostas:

1a. Sim	1b. Não	2a. Sim
2b. Sim	3a. $(2x+y^2)dx + (2xy + \cos y)dy$	3b. $(y+1/x)dx + (x+1/y)dy$
4. 0,16	5a. $4t^3 + 46t - 10$	5b. 42 t^{13}
$5c. \frac{2+2t}{t(2+t)}$	5d. $\frac{3}{t^2}sen(\frac{1}{t})$	5e. $10t^{\frac{7}{3}}e^{t^{\frac{10}{3}}}$
6a. $24 u^2 v^2 - 16 u v^3 - 2 v + 3$, $16 u^3 v - 24 u^2 v^2 - 2 u - 3$	6b. $-\frac{2 \operatorname{sen} u}{3 \operatorname{sen} v}$, $-\frac{2 \operatorname{cos} u \operatorname{cos} v}{3 \operatorname{sen}^2 v}$	6c. e ^u , 0
6d. $-sen u sen(u^2 + v^2) + 2u cos u cos(u^2 + v^2)$, $2v cos u cos(u^2 + v^2)$	6e. $\frac{3u+3v-4u^2}{u}$, $3lnu+2lnv+2$	7. 20
8. 3,6°C/s	9. $0.08\pi m^2/s$	10a. $(-1,\frac{1}{2})_{máx}$.
10b. (2,-4) _{sela}	10c. $(0,0)_{sela}$, $(1,1)_{min.}$, $(-1,-1)_{min.}$	10d. (0,2) _{máx} .
10e. $(0,0)_{sela}$, $(-1,1)_{máx}$.	10f. $(0,0)_{min.}$, $(2,1)_{sela}$, $(-2,1)_{sela}$	11. 1,29m ; 1,03m ; 0,45m
12. $(-\frac{1}{2}, 1, -1)_{min}$; $(0, 1, -1)_{sela}$; $(\frac{1}{2}, 1, -1)_{min}$	13. $(\frac{3}{2}, -\frac{3}{2})_{min}$	14. $(-\frac{1}{4}, 16)_{min}$
15. $(0,1/2)_{min}$; $(\pm\sqrt{3}/2,-1/2)_{m\acute{a}x}$		

Representação das superfícies da questão 10 (complementação da resposta)



Complemento para resposta : questão 15.

