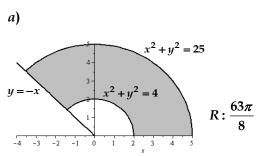
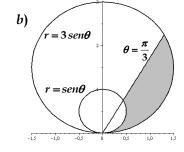
	() Prova	() Prova Semestral		Nota:
	(x) Exercícios	() Segunda Chama	da	
	() Prova Modular			
UNISOCIESC	() Prática de Laboratório			
UNISUCIESC	() Exame Final/Exame de Certificação			
Educação e Tecnologia	() Aproveitamento Extra	ordinário de Estudos		
Disciplina: Cálculo III			Turma:	
Professor: Bárbara , Dani, Milton e Rebello		Data:		
Aluno (a):				

LISTA 3 de exercícios - Integrais (coordenadas: polares, cilíndricas e esféricas)

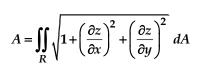
1. Determine a área das regiões usando coordenadas polares:

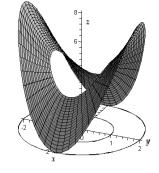




$$R:\frac{2\pi}{3}-\frac{\sqrt{3}}{2}$$

2. Com base na fórmula abaixo, determine a área da superfície $z = y^2 - x^2$ definida na região $1 \le x^2 + y^2 \le 4$. **Dica: Coord. Polares.**





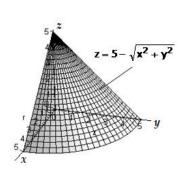
$$R: \frac{\pi}{6} (17\sqrt{17} - 5\sqrt{5})$$

- 3. Deduza as fórmulas para determinação dos volumes dos sólidos abaixo, usando a integral tripla.
- a) Cilindro de raio R e altura H, com base centrada na origem;
- b) Esfera de raio R com centro na origem.

$$R:a) \ \pi R^2 H \ , \ \ b) \frac{4}{3} \pi R^3$$

4 . Faça montagem da integral para o cálculo do volume do sólido ao lado, em coordenadas retangulares e cilíndricas e determine o volume usando a integral mais conveniente. Determine também a sua temperatura média sabendo que: $T(r,\theta,z) = 6r + 20$ (^{o}C)

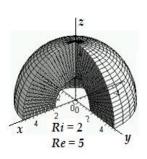
$$R: \frac{125\pi}{12}$$
 , 35 ${}^{o}C$



5. Determine o volume e a temperatura média da casca esférica ao lado onde:

$$T(\rho, \theta, \phi) = 50 - \frac{100}{\rho^2} \ (^{\circ}C)$$

$$R: \frac{117\pi}{2}$$
 , 42,3 °C



- 6. Faça os exercícios do livro George B. Thomas; vol.2; 11º edição: Lista 15.6 { 15, 18, 38 e 45 }
- 7. Uma peça será usinada com base nas equações dadas. Em função da geometria do sólido, muitas vezes tornase fundamental a mudança da geometria do espaço. Sabendo que a massa específica do material varia conforme a função $\frac{2}{y}$ (g/cm^3) , indique qual a integral válida para o cálculo da massa da referida peça.

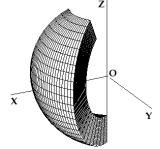
Dica:
$$m = \iiint_R m_{esp} . dV$$
 e $dV = \rho^2 sen\phi d\rho d\theta d\phi$

$$e \quad dV = \rho^2 sen\phi d\rho d\theta d\phi$$

Equações:

$$x^2 + y^2 + z^2 = 25$$
; $x^2 + y^2 + z^2 = 64$; $y = \sqrt{3}x$ e $z = \sqrt{3x^2 + 3y^2}$

$$y = \sqrt{3} x$$
 e $z = \sqrt{3x^2 + 3y^2}$



a) $\iint_{-\infty}^{8^{\frac{\pi}{3}\frac{\pi}{6}}} \int_{0}^{\frac{\pi}{6}} \frac{2\rho}{sen\theta} d\phi d\theta d\rho$

b)
$$\int_{5}^{8} \int_{0}^{\frac{\pi}{3}} \frac{2\rho}{sen \theta} d\phi d\theta d\rho$$
 c)
$$\int_{5}^{8} \int_{0}^{\frac{\pi}{3}} \frac{2\rho}{sen \theta} d\phi d\theta d\rho$$

$$\sum_{5}^{\infty} \int_{5}^{\frac{\pi}{3}} \int_{\frac{\pi}{2}}^{\pi} \frac{2\rho}{sen\,\theta} \,d\phi d\theta d\rho$$

d)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \int_{0.25}^{64} \frac{2}{r \cdot sen\theta} d\rho d\theta d\phi$$
 e)
$$\int_{0.05}^{\frac{\pi}{6}} \int_{0.25}^{\frac{\pi}{6}} \frac{2}{r \cdot sen\theta} d\rho d\theta d\phi$$

e)
$$\int_{0}^{\frac{\pi}{6}} \int_{0}^{\frac{\pi}{3}} \int_{5}^{8} \frac{2}{r.sen\theta} d\rho d\theta d\phi$$

8. Analisando a região e as integrais abaixo, indique qual a alternativa correta para o cálculo do volume do sólido limitado pelas superfícies: $\sqrt{x^2+y^2}+z=1$ e $x^2+y^2+z^2=1$, $z\leq 0$

a)
$$\int_{0}^{2\pi} \int_{0}^{r} \int_{-\sqrt{l-r^{2}}}^{1-r} r dz dr d\theta$$
 b) $\int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{1} r dz d\theta dr$ c) $\int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{1-r} r dz d\theta dr$ d) $\int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{1-r^{2}} r dz d\theta dr$

b)
$$\int_{0}^{1} \int_{0}^{2\pi} \int_{-1}^{1} r dz d\theta dr$$

c)
$$\int_{0}^{1} \int_{0}^{2\pi} \int_{-\sqrt{1-r^2}}^{1-r} r dz d\theta dr$$

d)
$$\int_{0}^{1} \int_{0}^{2\pi} \int_{1-r}^{\sqrt{1-r^2}} r dz d\theta dr$$

e)
$$\int_{0}^{1} \int_{0}^{\pi} \int_{-\sqrt{l-r^2}}^{1-r} r dz d\theta dr$$

