JUROS COMPOSTOS

    O regime de juros compostos é o mais comum no sistema financeiro e portanto, o mais útil para cálculos de problemas do dia-a-dia. Os juros gerados a cada período são incorporados ao principal para o cálculo dos juros do período seguinte.

    Chamamos de capitalização o momento em que os juros são incorporados ao principal. Após três meses de capitalização, temos:

    1º mês: M =P.(1 + i)
    2º mês: o principal é igual ao montante do mês anterior: M = P x (1 + i) x (1 + i)
    3º mês: o principal é igual ao montante do mês anterior: M = P x (1 + i) x (1 + i) x (1 + i)

    Simplificando, obtemos a fórmula:
  

M = P . (1 +  i)n

 

    Importante: a taxa i tem que ser expressa na mesma medida de tempo de n, ou seja, taxa de juros ao mês para n meses.

    Para calcularmos apenas os juros basta diminuir o principal do montante ao final do período:
  

J = M - P

 

    Exemplo:

   Calcule o montante de um capital de R$6.000,00, aplicado a juros compostos, durante 1 ano, à taxa de 3,5% ao mês.

   Resolução:

   P = R$6.000,00
    t = 1 ano = 12 meses
    i = 3,5 % a.m. = 0,035
    M = ?

   Usando a fórmula M=P.(1+i)n, obtemos:

   M  =  6000.(1+0,035)12  =  6000. (1,035)12 = 6000.1,511 = 9066,41.
   Portanto o montante é R$9.066,41

Relação entre juros e progressões

    No regime de juros simples:
    M( n ) = P + P.i.n  ==> P.A. começando por  P e razão J = P.i.n

    No regime de juros compostos:
    M( n ) = P . ( 1 + i ) n ==> P.G. começando por P e razão ( 1 + i ) n

    Portanto:


Próximo tópico: TAXA NOMINAL, PROPORCIONAL E REAL

<< VOLTAR PARA MATEMÁTICA FINANCEIRA