O Problema dos Bodes x Carro

por

Nicolau Corção Saldanha

 

Em um programa de auditório, o convidado deve escolher uma dentre três portas. Atrás de uma das portas há um carro e atrás de cada uma das outras duas há um bode. O convidado ganhará o que estiver atrás da porta; devemos supor neste problema que o convidado prefere ganhar o carro. O procedimento para escolha da porta é o seguinte: o convidado escolhe inicialmente, em caráter provisório, uma das três portas. O apresentador do programa, que sabe o que há atrás de cada porta, abre neste momento uma das outras duas portas, sempre revelando um dos dois bodes. O convidado agora tem a opção de ficar com a primeira porta que ele escolheu ou trocar pela outra porta fechada. Que estratégia deve o convidado adotar? Com uma boa estratégia, que probabilidade tem o convidado de ganhar o carro?

 

 

Resposta:

 

A resposta correta é que, trocando de porta, a probabilidade de ganhar o carro é 2/3, enquanto não trocando a probabilidade é apenas 1/3. Uma forma simples de ver isto é a seguinte: trocando de porta, o convidado ganha, desde que a primeira porta que ele escolher esconda um dos dois bodes, como se pode facilmente perceber. A melhor estratégia para o convidado é, portanto, trocar sempre, e assim sua probabilidade de ganhar fica sendo 2/3.

 

O erro comum aqui é achar que, após a eliminação de uma porta (que foi aberta pelo apresentador, revelando um bode), há uma simetria entre as duas outras portas e a probabilidade de cada uma esconder o carro é 1/2. Não existe, entretanto, tal simetria, pois a porta escolhida pelo convidado não poderia, pelas regras, ser trocada pelo apresentador, enquanto a outra poderia ter sido aberta, mas não foi.

 

Este processo de fato era seguido em um programa nos Estados Unidos. Uma longa e áspera discussão ocorreu na imprensa quanto a qual era o valor correto da probabilidade, e pessoas que deveriam ser capazes de resolver um problema trivial como este passaram pela vergonha de publicar soluções erradas. Julgamos melhor esquecer os detalhes deste episódio deprimente.

 

Nicolau Corção Saldanha

Departamento de Matemática, PUC-RIO

Gávea, Rio de Janeiro, RJ 22453-900, BRASIL

nicolau@mat.puc-rio.br, http://www.mat.puc-rio.br/~nicolau/

 

 

Outras situações